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Abstract

General dynamic factor models have demonstrated their capacity to cir-

cumvent the curse of dimensionality in time series and have been successfully

applied in many economic and financial applications. However, their perfor-

mance in the presence of outliers has not been analysed yet. In this paper, we

study the impact of additive outliers on the identification, estimation and fore-

casting performance of general dynamic factor models. Based on our findings,

we propose robust identification, estimation and forecasting procedures. Our

proposal is evaluated via Monte Carlo experiments and in empirical data.
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1 Introduction

In recent years, the analysis of high-dimensional time series data has become one

of the most active subjects of modern statistical and econometric studies, bringing

significant challenges, both from the statistical and the numerical points of view.

The most successful procedures so far, particularly for the analysis of economic and

financial data, are based on high-dimensional factor models, which allow both the

sample size and the dimension of the time series under study to go to infinity.

Above all, factor models do not suffer from the so-called curse of dimensionality

as the number of assets grows; see the surveys of Barhoumi et al. (2014) and Bai

and Wang (2016) for more details. These models can be used to summarize the

information contained in a large number of economic and financial variables into

a small number of factors or shocks common to the set of variables. The factors,

being estimated from the high dimensional data, can be used for either descrip-

tive or predictive purposes. Applications include: forecasting macroeconomic time

series (Stock and Watson, 2002a,b; Forni et al., 2005; Bai and Ng, 2008); excess

returns in stock and bond markets (Ludvigson and Ng, 2007, 2009); construction of

business cycle indicators and nowcasting (Cristadoro et al., 2005; Giannone et al.,

2008; Altissimo et al., 2010); structural macroeconomic analysis and monetary pol-

icy (Bernanke and Boivin, 2003; Favero et al., 2005; Stock and Watson, 2005; Eick-

meier, 2007; Forni et al., 2009; Forni and Gambetti, 2010); prediction of conditional

variance-covariance matrix (Alessi et al., 2009; Aramonte et al., 2013; Trućıos et al.,

2019b), to quote only a few.

However, applications are based on a static factor-loading scheme (Bai and Ng,

2002; Stock and Watson, 2002a,b), the main advantage of which is to allow for

estimation methods based on traditional principal components. Although this ap-

proach is easy to implement and widely used, the assumption of a static factor-

loading scheme, as pointed out by Forni and Lippi (2011) and Forni et al. (2015),

is quite restrictive and rules out some very simple and plausible cross-correlation

patterns leading to infinite-dimensional factor spaces . To overcome this issue, Forni

et al. (2000) introduced the so-called generalized or general dynamic factor model

(GDFM), in which factors (equivalently, common shocks) are loaded through filters
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rather than matrices. As shown in Hallin and Lippi (2013), the GDFM arises as

a representation result that, besides second-order stationary and the existence of

spectral densities, essentially does not place any restriction on the data-generating

process, and therefore, encompasses all other high-dimensional factor models con-

sidered in the literature. An information criterion for determining the number of

common shocks and one-sided filters for a consistent non-parametric estimation of

the GDFM are provided by Hallin and Lǐska (2007) and Forni et al. (2015, 2017),

respectively. The Forni et al. (2015, 2017) procedure has been successfully used to

forecast inflation and financial returns; see Della Marra (2017), Forni et al. (2018),

Giovannelli et al. (2018). It also has been used in the prediction of the conditional

variances of financial returns, the extraction of market shocks (Barigozzi and Hallin,

2016, 2017, 2018), and the prediction of conditional variance-covariance matrices

(Trućıos et al., 2019b).

Nevertheless, the estimation of the GDFM, including the identification of the

number of common shocks, does not take into account the existence of possible

outliers. It is known that principal components and likelihood-based estimates are

quite sensitive to outliers, especially outliers to the additive type, which are the most

common ones in practice. Several methods for outlier detection in time series are

available. Most methods, however, apply to univariate time series and little attention

has been given to robustness issues in the context of factor model. A method for

detecting and estimating the size of outliers in the dynamic factor model is proposed

by Baragona et al. (2007), based on linear transformations of the observed data.

Kristensen (2014) shows that the performance of predictors in static factor models

can be improved by replacing principal components with a robust alternative based

on least absolute deviations. A similar idea has been investigated previously by

Croux and Exterkate (2011). In their paper a number of alternatives to principal

components are examined including LAD-based approaches, but they obtain mixed

results as to which approach to be preferred from the point of view of forecasting

performance.

We claim that the problem lies in the non-robustness of the estimation and

prediction procedures as well. As discussed by Baragona et al. (2007), both the tra-
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ditional (static) PCA methods1 and the more general dynamic PCA methods2 yield

biased estimates in the presence of outliers. Given the good forecasting performance

of the GDFM model evidenced in the literature, we propose a robust version of the

criterion introduced by Hallin and Lǐska (2007) to estimate the number of common

shocks and a robust version of the estimation procedure of Forni et al. (2015, 2017)

in order to obtain robust estimates of common shocks, impulse-response functions,

and forecasts.

This paper contributes to the literature in three ways. First, we show through

Monte Carlo experiments that the identification, estimation, and forecasting of the

GDFM are strongly affected by the presence of outliers. In particular, the criterion of

Hallin and Lǐska tends to overestimate the number of common shocks. These results

are in agreement, for instance, with those obtained by Kristensen (2014), who finds

that the commonly used information criteria of Bai and Ng (2002) (estimating the

number of static factors) is severely inflated by outliers. Second, we propose robust

procedures for the identification, estimation, and prediction of the GDFM. Third, an

empirical application indicates that the best performance of our robust prediction

procedure, relative to the non-robust procedure, is achieved during crisis periods,

i.e, in the presence of outliers.

The structure of the paper is as follows. In Section 2, we present the GDFM

model with the estimation and prediction procedures and the identification crite-

rion for the number of common shocks. Section 3 presents Monte Carlo experiments

evaluating the performance of the GDFM in the presence of additive outliers. Be-

cause the results indicate that the existing procedures are highly non-robust to

additive outliers, Section 4 presents a robust alternative to circumvent the problem

and simulations showing that the suggested alternative presents a substantially bet-

ter performance. In Section 5 an empirical application is conducted to assess the

pseudo real-time forecasting performance of our robust procedure. We employ the

same large monthly dataset of macroeconomic and financial time series for the US

economy used in Forni et al. (2018). Concluding remarks are presented in Section 6.

1Based on the contemporary covariance matrix of the observations
2Based on the spectral density matrix of the observations
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2 The general dynamic factor model (GDFM)

2.1 General dynamic factor model with infinite-dimensional factor

space

Let {Xt = (X1t X2t . . . )
′, t ∈ Z}, be a double-indexed zero-mean second-order

stationary stochastic process, where the first index stands for the series and t for

time. The GDFM introduced in Forni et al. (2000) is based on a dynamic factor

representation of the form

Xit = χit + ξit

= bi1(L)u1t + bi2(L)u2t + ...+ biq(L)uqt + ξit, i ∈ N, t ∈ Z,
(1)

where L stands for the lag operator and the unobservable χit, ξit, and ujt for the

common components, idiosyncratic components, and common shocks, respectively.

We assume the following.

1. The vector process {ut = (u1t u2t ... uqt)
′, t ∈ Z} is an unobservable q-

dimensional orthonormal white noise process: the common shocks.

2. The idiosyncratic process {ξt = (ξ1t ξ2t . . . )
′, t ∈ Z} is zero-mean second-

order stationary and, additionally, ξkt and uk′t′ are mutually orthogonal for

any k, k′, t and t′. Moreover, it is assumed that {ξt} is weakly cross-sectionally

correlated, so that the comovements of the Xit’s are mainly accounted for by

the q common shocks.

3. The filters bik(L) are one-sided polynomials with square-summable coefficients

for any i = 1, 2, ... and any k = 1, ..., q.

4. The number q of common shocks is the smallest integer for which 1-3 hold.

The assumptions above define the GDFM, of which all other factor models in the

econometric time series literature are particular cases; see Forni et al. (2015, 2017).

An additional assumption which is adopted by many authors is that the common

components span a finite-dimensional space (Bai and Ng, 2002; Stock and Watson,

2002b; Forni et al., 2005, 2009; Alessi et al., 2010; Aramonte et al., 2013). Under

5



this assumption, we can rewrite the decomposition (1) in the static form

Xit = λi1F1t + ...+ λirFrt + ξit, (2)

where the static factors F1t, ..., Frt and the loadings λi1, ..., λir, i = 1, 2, ..., can

be estimated consistently using the first r standard principal components, r ≥ q.

However, as pointed out by Forni et al. (2000), Forni and Lippi (2011), Forni et al.

(2015, 2017) and Forni et al. (2018), representation (2) rules out simple and quite

plausible cases as

Xit = ai (1− diL)−1 ut + ξit, (3)

where the coefficients di are drawn, e.g., from a uniform distribution over the station-

ary region. In this case, the space spanned by the common components in model (3)

is no longer finite-dimensional.

Forni et al. (2000) and Forni et al. (2004) propose to use Brillinger’s (1981)

concept of dynamic principal components, which is based on the spectral density

of the X’s, to estimate model (1). While this estimator does not require a finite-

dimensional assumption on the space spanned by the common components, it in-

volves the application of two-sided filters, which lead to poor forecasting perfor-

mances.

Recently, Forni et al. (2015, 2017) showed how to obtain one-sided filters without

assuming a finite-dimensional factor space and how to construct estimators for (1) by

imposing the mild additional assumption that the common components have rational

spectral density (Assumption A.3 of Forni et al. (2015)), that is, each filter bif (L)

in (1) is a ratio of polynomials in L with unspecified, yet finite orders. Thus, they

assume that the common component in (1) can be rewritten as

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + ...+

ciq(L)

diq(L)
uqt, i ∈ N, t ∈ Z (4)

where

cif (L) = cif,0+cif,1L+...+cif,S1L
S1 , dif (L) = 1+dif,1L+...+dif,S2L

S2, f = 1, 2, ..., q,

the roots of each polynomial are outside the unit circle, and there are no common

roots among cif (L) and dif (L) for any i and f = 1, 2, ..., q.
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Then, under this mild assumption of a rational spectrum, Forni et al. (2015, 2017)

derive a static factor model representation (2) for a block-diagonal autoregressive

filtering of the observed process X satisfying (1). From Assumption A.3 of Forni

et al. (2015), the (q+1)-dimensional vector χ
(k)
t = (χ(k−1)(q+1)+1,t . . . χk(q+1),t)

′ has

the autoregressive representation

A(k)(L)χ
(k)
t = R(k)u

(k)
t , (5)

where R(k) is (q + 1) × q, A(k)(L) is a (q + 1) × (q + 1) polynomial matrix with

finite degree, and u
(k)
t = (u1t . . . uqt)

′, k ∈ N. Moreover, the filters A(k)(L) are

one-sided and fundamental, i.e. det(A(k)(z))6= 0 for z ∈ C such that |z| ≤ 1. That

assumption, actually, is very mild, as it holds generically3 under (4).

2.2 Estimation and forecasting

In practice, we have an observed (n × T )-dimensional panel of time series. There-

fore, assume, without loss of generality4, that n factorizes into n = m(q + 1) for

some m ∈ N, and partition the vector χnt as χnt = (χ
(1)
t χ

(2)
t . . . χ

(m)
t )′. In view

of (5), the n-dimensional vector χnt has a block-diagonal VAR representation of the

form

An(L)χnt =


A(1)(L) 0 . . . 0

0 A(2)(L) . . . 0
...

...
. . .

0 0 . . . A(m)(L)

χnt = Rnut =


R(1)

R(2)

...

R(m)

ut, (6)

where Rn is an n× q matrix of static loadings.

From (6), lettingXnt = (X
(1)
t . . . X

(m)
t )′ with X

(k)
t = (X(k−1)(q+1)+1,t . . . Xk(q+1),t)

′,

and filtering both sides of (1) by An(L), we obtain

Ynt = A(L)Xnt = Rnut + A(L)ξnt, (7)

which has a factor model representation with finite-dimensional common space.

3Precisely, it holds for all values of the parameters cif,j and dif,k, except for a subset with

Lebesgue measure zero.
4This is taken care of at the estimation stage, by generating random permutations of the cross-

section.
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The common components χnt in (6) can be recovered by inversion of the poly-

nomial A
(k)
n (L):

χnt = [An(L)]−1Rnut = Bn(L)ut = Bn0ut + Bn1ut−1 + ... (8)

where the common shocks ut in (8) are the same as in (7) and (1), and

[An(L)]−1 =


[A(1)(L)]−1 0 . . . 0

0 [A(2)(L)]−1 . . . 0
...

...
. . .

0 0 . . . [A(m)(L)]−1

 . (9)

The main advantage of representation (7) over (1) is that, after a simple filtering

involving (q + 1)-dimensional VARs, the GDFM can be estimated using one-sided

filters.

As mentioned in Forni et al. (2017, 2018) and Barigozzi et al. (2018), the estima-

tion of An(L) depends on the arbitrary cross-sectional ordering of the panel. Based

on a Rao-Blackwell argument, Forni et al. (2017) propose to average the estimates

over the n!/m! [(q + 1)!]m possible (q+1)-tuples of n cross-sectional items or, equiva-

lently, over the n! possible permutations of the cross-section. Clearly, averaging over

all n! permutations or a number n!/m! [(q + 1)!]m of (q+ 1)-tuples is unfeasible even

for moderate n. Fortunately, simulations reported in Forni et al. (2017) reveal that

the stabilization of the estimates is very fast, so that few permutations are sufficient

to obtain the same performance as if the n! possible ones were performed.

The estimation procedure is described as follows.

• Step 1: Determine the number q of common shocks in (1) applying, for

instance, the Hallin and Lǐska criterion.

• Step 2: For a given permutation of Xnt, start with a consistent estimator

Σ̂X(θ) =
1

2π

MT∑
k=−MT

e−ikθK

(
k

BT

)
Γ̂Xk

of the spectral density matrix of Xnt, where θ ∈ [−π, π], K(·) is a kernel func-

tion, MT is a truncation parameter, BT is the bandwidth parameter, and Γ̂Xk
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is the estimated covariance matrix between Xnt and Xn,t−k. In this paper, we

use the triangular kernel with BT =
√
T .

• Step 3: Using the first q dynamic principal components of Σ̂X(θ), estimate,

as in Forni et al. (2000), the spectral density matrix of the common com-

ponents Σ̂χ(θ) and, by classical inverse Fourier transform, the corresponding

autocovariance matrices, Γ̂χk .

• Step 4: For each of the m (q+1)×(q+1) diagonal blocks of Γ̂χk , estimate (after

AIC or BIC order identification) the coefficients of A(i)(L) via the Yule-Walker

method for i = 1, ...,m in (6). This yields an estimation of the block-diagonal

operator An(L) and, therefore, Ŷnt = Ân(L)Xnt is an estimate of the left-

hand side of (7).

• Step 5: As Ŷnt (up to estimation errors) admits a static factor model rep-

resentation, estimates ût and R̂ of ut and R, respectively, can be obtained

from the first q standard principal components of Ŷt: see Stock and Watson

(2002a) and Stock and Watson (2002b). Inverting the estimated polynomial

matrix Ân(L) yields the estimated impulse-response matrix

B̂n(L) = [Ân(L)]−1R̂n.

• Step 6: Use B̂n(L) to obtain the estimated common factors:

χ̂nt = [Ân(L)]−1R̂nût = B̂n(L)ut = B̂n0ût + B̂n1ût−1 + ...+ B̂nsût−s,

where s is a truncation threshold, large enough.

• Step 7: Repeat steps 2 - 6 for B different permutations. The estimated

impulse-response matrix
̂̂
Bn(L) and the estimated common components ̂̂χnt,

then, are obtained by averaging the B matrices B̂n(L) and χ̂nt. Note that

before averaging, each B̂n(L) and χ̂nt, for b = 1, ..., B, must be rearranged in

the original order of the panel. The averaging of each B̂n(L) also requires their

identification and, as in Forni et al. (2017), we impose a Cholesky identification

constraint on the first q variables.
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To obtain the h-step-ahead common component forecast, an additional step

should be added. For each permutation, the prediction equation for the common

components at horizon h takes the form

χ̂n,t+h|t = B̂nhût + B̂n,h+1ût−1 + ...

Then, the h-step-ahead common component forecast ̂̂χn,t+h|t is obtained by averag-

ing the B vectors χ̂n,t+h|t. Finally, putting
̂̂
ξnt = Xnt− ̂̂χnt, each of the idiosyncratic

variables
̂̂
ξit can be predicted using univariate methods, yielding the h-step ahead

predictor ̂̂
Xi,t+h|t = ̂̂χi,t+h|t +

̂̂
ξi,t+h|t.

2.3 Determining the number of common shocks

A crucial step in the analysis of dynamic factor models is the identification of the

number of common shocks. This number, beyond the economic interpretation, also

plays an important role in estimation and forecasting; see, for instance, Forni et al.

(2009), Aramonte et al. (2013), Della Marra (2017), Barigozzi et al. (2018) and Forni

et al. (2018).

A formal information criterion to determine the number of common shocks was

proposed by Hallin and Lǐska (2007) and achieves good performance, even in small

samples. This procedure is based on the eigen-decomposition of the spectral density

matrix and does not assume that the space spanned by the common components is

finite.

For given n, T and a positive constant c, the criterion selects the number of

common shocks that minimizes the contribution of the idiosyncratic components

q̂n,T ;c = arg min
0≤k≤qmax

ICn,T ;c(k), 0 ≤ k ≤ qmax, (10)

where qmax is a predefined upper bound and ICn,T ;c(k) is a information criterion

associated with the spectral density matrix ΣX(θ). In this paper, we use the loga-

rithmic information criterion as in Forni et al. (2017), which is given by

ICn,T ;c(k) = log

 1

n

n∑
i=k+1

1

2MT + 1

MT∑
l=Mt

λTi (θl)

+ c k p(n, T ), (11)

10



where p(n, T ) is a penalty function such that min(n,M2
T ,M

−1/2
T T 1/2)p(n, T ) → ∞

and p(n, T )→ 0 when n, T→∞, θl = πl/(MT + 1/2), λTi (θl) is the i-th eigenvalue

of the spectral density matrix ΣX(θ); c is an arbitrary positive real value and the

estimator of ΣX(θ) is defined in Step 2; a maximal value qmax of q also has to be

chosen. Hallin and Lǐska (2007) prove that q̂n,T ;c is consistent for any c > 0 as n

and T tend to infinity. An optimal value of c, denoted by c∗, is selected as follows.

Setting an upper bound C for the constant c, consider J subsamples of size (nj , Tj),

with 0 < n1 < ... < nJ = n and 0 < T1 ≤ ... ≤ TJ = T , j = 1, ..., J . Although we

can take Tj < Tj+1, choosing Tj = T for all j is recommended and it is used in this

paper. For each c > 0 and each subsample, the criterion yields a number q̂nj ,Tj ;c of

common shocks. For each c > 0, the variability among the J values of q̂nj ,Tj ;c for

j = 1, ..., J , is captured by

Sc =
1

J

J∑
j=1

q̂nj ,Tj ;c −
1

J

J∑
j=1

q̂nj ,Tj ;c

2

.

To select c∗ we look for intervals of c over which Sc=0. Hereafter, such intervals

are called stability intervals. Stability intervals are such that q̂nj ,Tj ;c=q̂n,T ;c is con-

stant for c ranging over such intervals. Starting in the neighbourhood of c=0 (no

penalty at all), a first stability interval (0, c+
1 ) corresponds to q̂n,T ;c=qmax. Disregard-

ing this qmax which clearly is not a consistent solution, choose c∗ as any point in the

next stability interval (c−2 , c
+
2 ). The selected number of factors is then q̂n,T=qn,T ;c∗ .

5

Summing up, in practice the identification method is performed as follows:

• choose MT and a maximum number qmax of common shocks; we chose

MT = 0.75
√
T and qmax=6;

• set a grid of values for the constant c ∈ C ⊂ [C−, C+] ⊂ R+; we chose

c = 0.01, 0.02, ..., 3.00;

• for each value of c in that grid, (a) randomly choose subsamples of increas-

ing dimension 0 < n1 < ... < nJ = n; we chose nj = n1 + b(n − n1)/10c,
j = 2, 3, ..., J , with n1 not too small6; (b) solve (10) to find q̂c;nj ,T

5See Hallin and Lǐska (2007) for an extensive explanation of the role of the constant c and other

parameters.
6We set this value to n1 = 3n/4.

11



for j = 1, ..., J ; (c) using the sequence q̂nj ,T ;c, j = 1, ..., J , compute the variance

of Sc;

• identify q as q̂ = q̂n,T ;c∗ , where c∗ belongs to the second stability interval of c.

Hallin and Lǐska (2007) in their Monte Carlo experiments use the following three

penalty functions:

p1(n, T ) = (M
1/2
T T−1/2 +M−2

T + n−1)× log(min[T 1/2M
−1/2
T ;M2

T ;n]);

p2(n, T ) = (min[T 1/2M
−1/2
T ;M2

T ;n])−1/2;

p3(n, T ) = (min[T 1/2M
−1/2
T ;M2

T ;n])−1 × log(min[T 1/2M
−1/2
T ;M2

T ;n]).

In our estimations we used p1(n, T ).

3 Monte Carlo experiments

In order to evaluate the performance of the GDFM in the presence of additive

outliers we carry out Monte Carlo experiments to evaluate their effects on the number

of common shocks identified by the Hallin and Lǐska (2007) criterion and on the

ensuing estimation of the common shocks and impulse response functions using the

procedure of Forni et al. (2015, 2017). Results are presented in Sections 3.1 and 3.2,

respectively. Finally, in Section 3.3, we assess the impact of outliers on the one-

step-ahead forecast procedure described in Forni et al. (2015, 2017) and Forni et al.

(2018). We consider the same data-generating process (admitting no static factor

representation) as in Forni et al. (2017), namely,

Xit = ai1(1− αi1L)−1u1t + ai2(1− αi2L)−1u2t + ξit, (12)

where ujt and ξit (j = 1, 2, i = 1, ...n, t = 1, ..., T ) are generated as i.i.d. standard

Gaussian variables; aij as i.i.d. uniform variables on the interval [−1, 1]; and αij as

i.i.d. uniform variables on the interval [−0.8, 0.8].

The (n, T )-dimensional panel is contaminated with two consecutive outliers ei-

ther in the middle or at the end of the sample period, in 5%, 10% and 15% of the

series. In all cases, outliers of size 10 times the standard deviation of the univariate

uncontaminated processes were considered.
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3.1 Estimation of the number of common shocks

Table 1 presents the percentage of times the Hallin and Lǐska criterion identified

the correct number of common shocks from series contaminated by two consecutive

outliers in the middle or at the end of the series. For the sake of comparison,

we also include the results for uncontaminated series. We consider panel dimen-

sions n = 60, 120 and 240, sample size T=120 and 500 replications.

Results show that the Hallin and Lǐska criterion never under identifies the right

number of common shocks. When there are no outliers, the identification was incor-

rect in only 5 replications, all for panel dimension 60, which corresponds to 1% of the

cases only for this panel dimension. However, in most cases, only two consecutive

outliers in a few series are sufficient to produce an overestimation of the number of

common shocks. The overestimation is larger when the outliers occur in the middle

of the series and also when the percentage of outliers and sample size increase. When

only 5% of the series are contaminated by outliers at the end of the series, no big

differences with the uncontaminated case are observed. For outliers in the middle of

the series, when we increase the panel dimension to 120, the overestimation increases

to 28.2%. When 10% of the series are contaminated, for panel dimension 120, we

already have overestimation in 96.4% of the cases when the outliers are at the end

of the series, and 99.4% when the outliers are in the middle of the series. When we

have contamination in 15% of the series, the overestimation percentage is already

as high as 97.2%(97.4%) when the panel dimension is equal to 60 and the outliers

occur at the end (in the middle) of the series. It is clear that the Hallin and Lǐska

(2007) criterion under such contamination tends to overestimate the number of com-

mon shocks, and it can reach all cases as the proportion of contaminated series and

the number of series increases. These results demonstrate the need for a more ro-

bust method, especially considering that the method is recommended to be used for

high-dimensional data sets.

These results are in concordance with those obtained by Kristensen (2014) and

Trućıos et al. (2019a) who, in a different but related context, found that the num-

ber of principal components (Peason, 1901; Hotelling, 1933) and principal volatility

components (Hu and Tsay, 2014; Li et al., 2016) also tend to be over-identified when

the series are contaminated by additive outliers.
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Table 1: Percentage of common shocks selected by the Hallin and Lǐska criterion

in uncontaminated and contaminated series. Panel dimension n equal to 60, 120,

and 240 and sample size T=120. Pattern of contamination: two consecutive outliers

of size 10 either in the middle or at the end of the sample period. The number of

Monte Carlo replications is 500 and the correct number of common shocks is 2.

n q̂

No Percentage of series contaminated by two consecutive additive outlier:

outlier 5% 10% 15%

in the middle at the end in the middle at the end in the middle at the end

6
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 99.0 93.4 98.0 20.2 34.6 1.2 2.4

3 1.0 6.4 2.0 79.0 64.8 97.4 97.2

4 0.0 0.2 0.0 0.8 0.6 1.4 0.2

5 0.0 0.0 0.0 0.0 0.0 0.0 0.2

1
2
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 83.2 99.4 0.4 3.6 0.0 0.0

3 0.0 16.8 0.6 99.4 96.4 99.8 100

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.2 0.0 0.2 0.0

2
4
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 71.8 92.8 0.0 0.0 0.0 0.0

3 0.0 28.2 7.2 100 100 100 99.8

4 0.0 0.0 0.0 0.0 0.0 0.0 0.2

3.2 Estimation of common shocks and impulse-response function

We reproduce the Monte Carlo experiment of Forni et al. (2017) using (12) and

compare the average and standard deviation of the normalized mean squared er-

rors (MSE) in uncontaminated series with those obtained under different patterns

of contamination. The number of common shocks is assumed to be known when

computing the normalized MSEs. Furthermore, the comparison of the estimated

shocks and impulse–response functions with the corresponding simulated quantities

requires an identification rule. As in Forni et al. (2017), our exercise is based on

a Cholesky identification scheme on the first q variables; see Forni et al. (2017) for

more details. A superscript* is used for identified quantities. The normalized MSE
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for the impulse-response functions is given by∑n
i=1

∑q
f=1

∑K
k=1(b̂∗if,k − b∗if,k)2∑n

i=1

∑q
f=1

∑K
k=1(b∗if,k)

2
, (13)

where b∗if,k is the estimated impulse-response coefficient of variable i for shock f at

lag k and the truncation lag K is set to 60. Similarly, the estimation error on the

shocks is measured by ∑q
f=1

∑T
t=1(û∗ft − u∗ft)2∑q

f=1

∑T
t=1(u∗ft)

2
. (14)

Table 2 reports the results for different values of the panel dimension n and

sample size T=120. Results confirm the intuition that the performance on the

estimation of the impulse-response functions and structural shocks decreases as the

proportion of contaminated series increases. A substantial increase in the average

and standard deviation of the MSE is observed regardless of the outlier position.

Note that, even with as little as 5% of series contaminated, a significant increase in

the average and standard deviation of the MSE is observed.

To understand the effects of over-identification of the number of common shocks,

Figure 1 plots the estimated common shocks of a single simulated panel with n = 60,

T=120, and q=2 where 15% of the series are contaminated. We consider uncon-

taminated series (first and second columns), series contaminated at the end of the

sample period (third and fourth columns) and series contaminated in the middle of

the sample period (fifth and sixth columns). We either considered q as known or

determined by the Hallin and Lǐska criterion, which yields q̂ = 3 in contaminated

series and q̂ = 2 for the uncontaminated ones. For the sake of comparison, we have

also considered an imposed value of q̂ = 3 in the uncontaminated case.

For uncontaminated series, over-identification of the number of common shocks

does not seem to be a big concern. The first two estimated common shocks are quite

similar, whether q̂ = 2 or q̂ = 3 and, for q̂=3, the third estimated common shock

is close to zero with small variability. On the other hand, for contaminated series,

over-identification has a strong effect in the estimation of the common shocks. Note

that, when we estimate three common shocks, as determined by the Hallin and Lǐska

criterion, the results are worse than using the correct number of common shocks in

the presence of outliers.
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Table 2: Monte Carlo averages and standard deviations (in parentheses) of nor-

malized MSE for estimated impulse-response functions (top panel) and structural

shocks (bottom panel) in uncontaminated and contaminated series across 500 data

sets. Panel dimensions n=60, 120, 240 and sample size T=120.

n

No Percentage of series contaminated by two consecutive additive outlier

outliers 5% 10% 15%

in the middle at the end in the middle at the end in the middle at the end

Impulse-response functions

60 0.145 0.246 0.244 0.267 0.271 0.299 0.315

(0.034) (0.098) (0.092) (0.106) (0.096) (0.113) (0.112)

120 0.157 0.261 0.258 0.272 0.281 0.297 0.315

(0.034) (0.089) (0.096) (0.090) (0.100) (0.098) (0.104)

240 0.163 0.268 0.268 0.280 0.288 0.302 0.321

(0.033) (0.082) (0.090) (0.087) (0.093) (0.092) (0.102)

Structural shocks

60 0.135 0.209 0.208 0.221 0.222 0.239 0.249

(0.033) (0.101) (0.093) (0.111) (0.097) (0.119) (0.111)

120 0.093 0.171 0.169 0.177 0.181 0.193 0.202

(0.031) (0.092) (0.106) (0.096) (0.110) (0.106) (0.116)

240 0.069 0.145 0.147 0.154 0.157 0.169 0.179

(0.028) (0.084) (0.098) (0.093) (0.101) (0.100) (0.114)

3.3 Forecasting

In this section, we analyse the forecasting performance of the GDFM in the presence

of outliers. For the sake of comparison, as in Forni et al. (2017), the accuracy of

one-step-ahead forecasts is measured by∑n
i=1(χ̂i,T+1 − χi,T+1)2∑N

i=1(χi,T+1)2
, (15)

where χ̂i,T+1 =
∑q

f=1(b̂if,1ûfT + b̂if,2ûf,T−1 + ...). We consider two cases. In the first

case (top panel of Table 3), the number of common shocks is known, that is, there

is no misidentification. In the second case (bottom panel of Table 3), the number

of common shocks is determined by the Hallin and Lǐska criterion which, as shown

in Section 3.1, is not robust in the presence of outliers. The normalized MSE of

the one-step-ahead forecasts reported in Table 3 reveals the strong effect of outliers

on the forecasting performance. The highest MSEs are observed when the number
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Figure 1: Estimated common shocks in a simulated panel with n=60, T=120, q=2.

Uncontaminated series (first and second column), 15% of contamination at the end

(third and fourth columns) and 15% of contamination in the middle (fifth and sixth

columns) of the sample period.

of common shocks is determined by the Hallin and Lǐska criterion. These results

show that, in the presence of outliers at the end of the sample period, identifying

more common shocks than necessary has a strong impact on the forecasts. When q is

known the normalized MSE decreases when the panel dimension increases, regardless

the presence of outliers. When q is unknown, that also happens, except when the

outliers occur at the end of the series with 5% and 10% of contamination. This

possibly happens because the negative effect of the overestimation of the number of

common shocks is stronger than the gain from the panel dimension increase.

In practice, we are in fact interested in forecasting the variables Xits and we

do not know the number of common shocks, which is the case in the application of

Section 5.
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4 Robustification

As reported in the previous section, Monte Carlo experiments show that the iden-

tification, estimation, and forecasting of the GDFM are strongly affected by the

presence of outliers. In this section, we provide a robust alternative to circumvent

these problems.

Table 3: Monte Carlo averages and standard deviations (in parentheses) of nor-

malized MSE for the one-step-ahead forecasts in uncontaminated and contaminated

series across 500 data sets. The panel dimensions are n = 60, 120 and 240 and

sample size is T=120.

N

No Percentage of series contaminated by two consecutive additive outlier

outliers 5% 10% 15%

at the middle at the end at the middle at the end at the middle at the end

q is known

60 0.414 0.527 0.560 0.565 0.704 0.636 0.955

(0.246) (0.215) (0.298) (0.240) (0.402) (0.332) (0.658)

120 0.368 0.493 0.499 0.531 0.624 0.600 0.823

(0.211) (0.175) (0.191) (0.210) (0.262) (0.307) (0.430)

240 0.344 0.487 0.484 0.520 0.593 0.583 0.779

(0.146) (0.154) (0.163) (0.189) (0.198) (0.260) (0.315)

q is determined by Hallin and Lǐska

60 0.414 0.527 0.586 0.554 4.382 0.567 7.830

(0.246) (0.221) (0.402) (0.327) (10.244) (0.343) (12.831)

120 0.368 0.492 0.605 0.488 4.919 0.498 6.408

(0.211) (0.193) (1.244) (0.305) (7.039) (0.262) (10.450)

240 0.344 0.471 1.047 0.448 4.475 0.462 5.378

(0.146) (0.169) (5.705) (0.191) (8.075) (0.188) (8.474)

4.1 Robust identification criterion

The correct identification of the number of common shocks is crucial for the esti-

mation of the GDFM. In Section 3 we showed through Monte Carlo simulations the
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non-robustness of the procedure proposed by Hallin and Lǐska (2007)7 and its impli-

cations in the estimation and forecasting of the GDFM. To overcome the misidentifi-

cation observed under contaminated data, we propose a robust version of the Hallin

and Lǐska criterion.

As the Hallin and Lǐska criterion is based on the eigen-decomposition of Σ̂X(θ),

we propose to replace Σ̂X(θ) by a robust estimator Σ̃X(θ) of the spectral density

matrix. This is achieved by using a robust estimator Γ̃k of the covariance matrix

between Xt and Xt−k, yielding the robust estimator

Σ̃X(θ) =
1

2π

MT∑
k=−MT

e−ikθK

(
k

BT

)
Γ̃k. (16)

The GDFM is used in high-dimensional data to circumvent the curse of di-

mensionality. Because robust procedures with high computational costs make the

estimation unfeasible in a high-dimensional context, a robust and fast procedure to

estimate Γk is necessary. As mentioned in Maronna et al. (2006), a fast and robust

alternative can be achieved via a robust estimation of pairwise covariances. We

propose to use the robust estimator of Ma and Genton (2000), which is based on

the scale parameter of Rousseeuw and Croux (1992, 1993) for each pair of variables.

This estimator is fast to compute, location-free, and has shown a good trade-off

between efficiency and robustness. Plenty of robust alternatives to Ma and Genton

(2000) are available in the literature, but they are computationally more expensive

and generally unfeasible in a high-dimensional framework.

We ran a Monte Carlo experiment with 500 replications considering the robust

criterion in Table 4 with n = 60, 120, 240 and T =120. The minimum values n1 (see

Section 3.2) used in the robust procedure were 3n/4, n/2 and n/4 for n= 60, 120, and

240, respectively. The performance of our procedure appears to be sensitive to the

choice of n1. As a rule of thumb, we suggest using 3n/4 when the concentration ratio

is smaller than one, n/2 when the concentration ratio is close to one, and n/4 when

the concentration ratio is larger than one. These values yields good performances in

our Monte Carlo experiments. As we observe in Table 4, the robustified procedure

correctly identifies the number of common shocks almost 100% of times, whereas

7Actually, the Hallin and Lǐska criterion, for the GDFM, is the only consistent method available

in the literature.
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the unrobustified procedure of Hallin and Lǐska (2007) overestimates the number of

common shocks (see Table 1).

Table 4: Percentage of common shocks selected by the robust version of Hallin and

Lǐska criterion in uncontaminated and contaminated series for dimensions n= 60

(top panel), 120 (middle panel), 240 (bottom panel), and sample size T = 120. The

number of Monte Carlo replications is 500.

N q̂

No Percentage of series contaminated by additive outlier

outlier 5% 10% 15%

in the middle at the end in the middle at the end in the middle at the end

6
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 99.6 99.6 99.4 99.6 99.6 99.6 99.6

3 0.4 0.4 0.6 0.4 0.4 0.4 0.4

1
2
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 99.6 99.6 99.4 99.6 99.6 99.6 99.4

3 0.4 0.4 0.6 0.4 0.4 0.4 0.6

2
4
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 100 100 100 100 100 100

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Although the pairwise approach by Ma and Genton (2000) is fast and easy

to implement, it lacks the affine equivariance and the positive definiteness prop-

erties. Modifications to obtain positive definiteness and approximate equivariance

have been proposed in the literature; see Rousseeuw and Molenberghs (1993) and

Maronna and Zamar (2002). Nevertheless, the componentwise estimator without

any modification reported the best performance in our Monte Carlo experiments.

An even faster alternative is the procedure recently proposed by Raymaekers

and Rousseeuw (2018), which is based on a V-robust transformation of the data;

see Hampel et al. (1981) and Raymaekers and Rousseeuw (2018) for details. This

procedure consists in applying a transformation to all observations in the original

dataset and then computing the sample covariance matrix as usual. The transformed

observations are of the form

X∗it = µ̂i + σ̂iΨb,c

(
Xit − µ̂i

σ̂i

)
, (17)
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where µ̂i and σ̂i are robust estimates of µi and σi, respectively, and

Ψb,c(x) =


x, 0 ≤ |x| ≤ b,
d1 tanh (d2 (c− |x|)) sign(x), b ≤ |x| ≤ c,
0, c ≤ |x|,

with the constants d1 and d2 chosen such that Ψb,c(·) is a continuous function.8

We use b = 1.5, c = 4, d1 = 1.540793 and d2 = 0.8622731 as in Raymaekers and

Rousseeuw (2018). The robust scale estimator proposed by Rousseeuw and Croux

(1992, 1993) is used to estimate σi, and µ̂i is obtained by an M-estimator using

the function Ψb,c(·). Besides its cheaper computational cost, the robust estimator

of Raymaekers and Rousseeuw (2018) satisfies the affine equivariance as well as the

positive semidefiniteness properties, which makes its use more attractive.

Table 5 reports the results of the robust version of Hallin and Lǐska (2007) based

on the robust estimators of Raymaekers and Rousseeuw (2018). Results are very

similar to those obtained in Table 4, the number of common shocks is correctly

identified almost 100% of times.

Despite the good finite-sample properties of both methods, we suggest using the

last one because its computational time is much smaller, and also due to its desirable

properties of invariance and positiveness. Unlike the robust alternative using the

estimator of Ma and Genton (2000), where the value of n1 plays an important role

and needs to be chosen according to the concentration ratio, the Raymaekers and

Rousseeuw (2018) method is not sensitive to the choice of n1, and we set this value

to n1 = 3n/4.

8Details about how to obtain the constants can be found in the supplementary material of

Raymaekers and Rousseeuw (2018).

21



Table 5: Percentage of common shocks selected by the Hallin and Lǐska criterion

when robustified via Raymaekers and Rousseeuw (2018), in uncontaminated and

contaminated series, for dimensions n=60 (top panel), 120 (middle panel), 240 (bot-

tom panel), and sample size T = 120. The number of Monte Carlo replications is

500.

N q̂

No Percentage of series contaminated by additive outlier

outlier 5% 10% 15%

in the middle at the end in the middle at the end in the middle at the end

6
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 99.0 99.2 99.6 99.0 99.0 99.0 99.2

3 1.0 0.8 0.4 1.0 1.0 1.0 0.8

1
2
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 99.8 99.8 99.8 99.8 100 99.8

3 0.0 0.2 0.2 0.2 0.2 0.0 0.2

2
4
0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 100 100 100 100 100 100 100

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.2 Robust estimation and forecasting procedures

A robust estimator of the spectral density matrix alone is not enough to robustify

the GDFM estimator, as it only ensures robust estimates Ãn(L) for A(L). In-

deed, Ỹnt = Ãn(L)Xnt in Step 3 of Section 2.2 still will be affected by the presence

of outliers due to the contamination in Xnt. To overcome this issue, we propose a

slight modification in Steps 5 and 6 of Section 2.2. Once the number of common

shocks is selected using the previously described robust procedure, we proceed as

follows.

• Step 5*: Apply a robust principal component procedure to Ỹnt = Ãn(L)Xnt,

where Ãn(L) is a robust estimate of A(L) based on Σ̃X(θ). Then, the impulse-

response matrix is given by B̃n(L) = [Ãn(L)]−1R̃, where R̃ is the matrix of

eigenvectors associated with the q largest eigenvalues obtained from the robust

principal component procedure.

• Step 6*: Use B̃n(L) to obtain a robust estimation

χ̃nt = [Ãn(L)]−1R̃nũt = B̃n(L)ũt = B̃n0ũt + B̃n1ũt−1 + ...+ B̃nsũt−s,
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of the common components, where Ãn(L) and R̃n are as defined in the previous

step. As ũt = ỹntR̃n is still affected by outliers, the robust estimation of the

common shocks is taken as ũt = ρ(ỹt)R̃n with

ρ(ỹt) =


(ỹ1t, ..., µ̂

R
i , ..., ỹnt), if (ỹit − µ̂Ri )/σ̂Ri > c1

µ̂R, if SDt > c2 and ODt > c3

ỹt, otherwise,

(18)

where i stands for the ith series in the panel, µ̂Ri = (µ̂1t, ..., µ̂nt)
′ is a ro-

bust location estimator of Ỹit, µ̂
R is a multivariate robust location estimator

of Ỹnt and SDt and ODt stand for the score distance and orthogonal dis-

tance associated to ỹt; see, for instance, Hubert et al. (2002, 2005, 2018)

for more details about SDt and ODt. The first inequality in (18) can be

valid for no series or even for all series, and eventually obtain a vector of the

form (ỹ1t, . . . , µj1 , ỹj1+1,t, . . . , µjk , . . . , ỹnt) .

Similarly to the non-robust version, the robust forecast of the common components

at horizon h is obtained as

χ̃n,t+h|t = B̃nhũt + B̃n,h+1ũt−1 + ...+ B̃n,t+h−1ũ1.

Finally, the robust version of the final estimated impulse-response matrix
˜̃
Bn(L),

the common components ˜̃χnt, and the h-step-ahead common component ˜̃χn,t+h|t
are obtained by averaging their corresponding versions across B permutations as in

Step 7 of Section 2.2.

There are a number of robust alternatives to classical principal components anal-

ysis; see, for instance, Croux and Haesbroeck (2000), Engelen et al. (2005) and

Maronna (2005) for interesting comparative studies. Those approaches can be di-

vided into two groups. The first group is based on a robust estimation of the

covariance matrix and the second is based on projection pursuit. However, only

few of the existing methods are feasible in a high-dimensional framework. In this

paper, we have used the robust principal component procedure (ROBPCA) of Hu-

bert et al. (2005) because its good performance in high dimensions. That procedure

combines projection pursuit and robust estimation of the covariance matrix. We
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have also used the robust procedure of Hubert et al. (2002), but the results using

the ROBPCA procedure were much better.

Results comparing the robust and non-robust procedures when estimating the

impulse-response functions, structural shocks and common components of the GDFM

are reported in Figures 2 - 4. In the absence of outliers, the performance of the non-

robust procedure is (not surprisingly so) slightly better. However, the advantage

of the use of the robust procedure in the presence of outliers is clear in all cases.

Note that, when the number of common shocks is estimated in a non-robust way,

the differences between the robust and non-robust procedures are huge. Assuming

that the true number of common shocks is known results in an improvement in the

non robust procedure, although better results still are obtained with the robust ap-

proach. Whenever outliers are likely to be present in the observations, we suggest

using our robust approach, as the consequences of neglecting the impact of those

outliers may be quite dramatic.
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Figure 2: Boxplots of the normalized MSE in logarithmic scale for estimated impulse-

response functions in uncontaminated and contaminated series, using the non-robust

(red) and robust (blue) procedures. Dimension n = 60 (top panel), 120 (middle

panel), and 240 (bottom panel). Sample size T = 120. The number of Monte Carlo

replications is 500.

24



●
●●●
●

●●
●
●
●●●
●

●●
●
●
●●●
●

●●
●

●

●

●●
●
●
●
●●

●●

●●

●●

●

●●
●
●
●
●●

●●

●●

●●

●

●●●
●
●
●●
●
●

●●●

●

●

●

●●

●
●●

●

●

●

●●

●
●●

●

●

●

●●

●
●●

●
●●

●

●●

●

●

●●●●●●●

●●
●●

●

●●

●

●

●●●●●●●

●
●
●

●

●●

●

●

●●●●●●

●

●●

●

●●●

●●

●

●●●

●●

●

●●●
●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●
●●●
●
●
●

●

●

●
●

●
●
●

●

●●
●
●

●
●●

●

●●

●

●

●

●●
●●

●●●

●

●

●

●

●●

●
●

●
●
●●
●
●●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●
●

●●
●
●

●
●

●

●

●

●

●

●

●

●●●

●

●●
●
●

●●

●

●

●

●
●

●

●
●
●

●●●●
●

●

●

●
●

●

●
●

●
●
●

●

●
●
●

●

●●
●

●

●●

●

●

●

●●

●

●●

●

●
●

●
●●
●●
●
●●●
●
●
●●●●
● ●●

●

●●●

●

●

●
●

●●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●●
●
●●

●
●

●
●●●●●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●
●●
●

●

●

●
●

●

●

●●●●

●

●
●●

●●

● ●

●

●

●

●

●●

●

●

●

●

●
●●
●
●●
●

●
●

●●●
●

● ●

●

●●●

●

●

●

●

●

●
●
●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

● ●
●●

●

●
●●
●
●●

●
●

●
●
●●●
●●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●●●●
●

●●

●

●

0% 5% 10% 15%

6
0

1
2
0

2
4
0

None Middle End Middle End Middle End

0.03

0.10

0.30

1.00

0.03

0.10

0.30

1.00

0.03

0.10

0.30

1.00

Non−robust

Robust

Figure 3: Boxplots of the normalized MSE in logarithmic scale for estimated struc-

tural shocks in uncontaminated and contaminated series, using the non-robust (red)

and robust (blue) procedures. Dimension n = 60 (top panel), 120 (middle panel),

and 240 (bottom panel). Sample size T = 120. The number of Monte Carlo replica-

tions is 500.

25



●

●

●

●
●

●

●●

●
●

●

●●

●

●
●

●
●

●

●●

●

●
●●●

●
●●

●

●

●

●●●

●
●●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●
●●
●

●●

●
●●
●

●●

●
●● ●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●

●
●●

●

●

●
●

●

●
●●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●
●

●
●

●●

●●

●

●
●

●

●
●

●
●●

●

●

●

●●
●

●

●

●●

●
●●●

●
●
●
●
●
●

●

●●●

●
●
●

●

●
●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●●

●●
●

●

●

●

●

●●

●●

●
●

●

●

●

●●
●

●●

●

●

● ●

●

●

●

●●

●

●
●●●

●

●●

●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●
●
●

●●

●

● ●●

●
●

●
●

●

●
●
●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●●
●●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●●●
●

●

●●

●

●

●

●●

●

●

●

●
●
●

●
●
●

●

●●

●
●

●●

●

●●
●

●

0% 5% 10% 15%

6
0

1
2
0

2
4
0

None Middle End Middle End Middle End

0.1

0.3

1.0

3.0

0.1

0.3

1.0

3.0

0.1

0.3

1.0

3.0

Non−robust

Robust

●

●
●

●

●●

●
●●

●
●

●

●●

●
●●

●
●

●

●●

●
● ●●●

●
●●

●

●

●

●●●
●
●●

●

●

●

●●●
●
●
●

●

●

●

●

●●

●
●●●

●●

●
●●●

●●

●
●● ●●

●
●
●

●●

●

●●

●
●
●

●●

●

●●

●
●
●

●●●

●

●
●●
●

●

●●

●

●
●●
●

●

●●

●

●
●●
●

●

●●

●

●
●
●
●

●

●

●
●
●

●

●
●
●
●
●

●

●

●
●
●

●

●
●
●
●
●

●

●

●
●
●
●

●

●

●●●

●
●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●●

●
●●
●●

●

●●

●

●●

●

●

●
●

●●

●

●●
●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●●●
●●●

●

●●●
●
●
●

●

●●
●●
●

●

●

●

●●

●
●

●

●●●
●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●●
●

●
●
●●
●
●●
●

● ●●

●●

●●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●
●
●
●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●●

●●

●●

●

●

●

●

●

●

●

●
●
●●
●

●●●

●

●●

●
●

●●

●

●●●

●

0% 5% 10% 15%

6
0

1
2
0

2
4
0

None Middle End Middle End Middle End

0.1

1.0

10.0

100.0

0.1

1.0

10.0

100.0

0.1

1.0

10.0

100.0

Non−robust

Robust

Figure 4: Boxplots of the normalized MSE in logarithmic scale for the estimated

common components when the number of common shocks is known (top) and esti-

mated (bottom). The Hallin and Lǐska criterion was used in the non-robust analysis

while the robust analysis was based on the robust procedure in (16) based on the

estimator of Raymaekers and Rousseeuw (2018). Dimension n = 60, 120, and 240 .

Sample size T = 120. The number of Monte Carlo replications is 500.
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5 Empirical application

We use the same dataset as Forni et al. (2018), which consists of 115 US macroe-

conomic and financial time series at monthly frequency between January and Au-

gust 2014. Each series is transformed properly to achieve stationarity.9

Let Zt = (Z1t Z2t ... Znt)
′ be the raw dataset, and Xt = (X1t X2t ... Xnt)

′ be

the stationary result of the transformations of Zt.
10 Estimation is carried out using

the marginal standardized version of Xt denoted as xt.

As in Forni et al. (2018), at time t we compute the h-step ahead forecasts for the i-

th series xi,t+h, h = 6, 12, 24. The forecasts are estimated using (m1) the non-robust

estimation procedure of Forni et al. (2015, 2017) (FHLZ); (m2) our proposed robust

estimation procedure (RFHLZ); (m3) the standard principal component model in-

troduced in Stock and Watson (2002a,b) with five factors (SW5); (m4) the model

based on generalized principal components introduced in Forni et al. (2005) (FHLR);

and (m5) n marginal univariate autoregressive models (AR) as the benchmark. The

specifications of models FHLZ, FHLR, SW and AR and the calibration procedure

are summarized in the Appendix, and they are the same as in Forni et al. (2018),

For all the methods we use a rolling 10-year window [t-119, t], and the models

are re-estimated for each t. All the forecasts are obtained directly for each horizon h,

not iterating one-step-ahead forecasts. The forecast of Xi,t+h is, then, obtained by

restoring the standard deviation and the mean. As in Forni et al. (2018), our first

rolling window comprises February 1975 to January 1985 and the last forecast is

August 2014 for all horizons. The period previous to February 1975 is used in the

calibration procedure.

Our objective is to assess the performance of methods ml when predicting the

industrial production index (IP) and the consumer price index (CPI) (i = 1, 77).

Figure 5 presents the plots of these series and their normalized versions. For the

IP series the normalized series are their returns, while for the CPI series they are

the seasonal difference of their returns. During the sub-prime crisis period, there

9We dropped the variable ”US AVG OVERTIME HOURS - MANUFACTURING VOLA”

(USHXPMANO) due to its lack of variation. Our final database, then, contains 114 monthly

macroeconomic time series.
10We implement the same transformations to stationary as Forni et al. (2018).
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is a continuously strong decrease of the IP series. There is also an increase in the

volatility of IP and CPI series during the crisis period.

In order to check for the presence of outliers, in Figure (6) we apply to all the se-

ries the robust transformation procedure of Raymaekers and Rousseeuw (2018) given

by Equation (17). We observe in Figure (6) many points outside the bands |b|=1.5

and |c|=4, with larger concentration in the crisis and post-crisis periods (from De-

cember 2007 on). For simplicity we call this period the crisis period.

As in Forni et al. (2018), we compare the predictor performance by the MSFE, the

Diebold-Mariano test (Diebold and Mariano, 1995) for the null hypothesis of global

equal performances between two predictors, and the fluctuation test of Giacomini

and Rossi (Giacomini and Rossi, 2010) to compare locally the performance of two

predictors.

For the variable i and the ml prediction method, the MSFE forecasting perfor-

mance evaluated as

MSFEml
i,h =

1

(T1 − h)− T0 + 1

T1−h∑
τ=T0

[FEml
i,τ,h]2,

where

FEml
i,t,h =

1

h
((X̂ml

i,t+1|t −Xi,t+1) + ...+ (X̂ml

i,t+h|t −Xi,t+h)),

and X̂ml

i,t+k|t, k = 1, · · · , h, is the k−step-ahead prediction for the variable i given by

method ml, l = 1, ..., 5.

Denote by MSFEm5
i,h the MSFE of the benchmark AR model. As in Forni et al.

(2018), the relative performance of the m prediction method at horizon h = 6, 12, 24

for the variable i in relation to the benchmark AR model is defined as

RMSFEml
i,h =

MSFEml
i,h

MSFEm5
i,h

, l = 1, ..., 4.

The results of the application is given in Table 6. As in Forni et al. (2018), we give

results for the pre-crisis period, from February 1985 to November 2007, and for the

full sample period, from February 1985 to August 2014. We also add the results for

the crisis period.

Tables 7 presents the p-values of the two-sided Diebold-Mariano test for the null

hypothesis of global equal performance between two predictors. Due to the presence
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Figure 5: Z1t = IPt (first panel); Z77t = CPIt (second panel); x1t = (1 − L)logIPt

(third panel); x77,t = (1 − L)(1 − L)12logCPIt (fourth panel). Dashed red line

represents the crisis beginning (2007:12). The NBER recession periods are shaded

in light gray.
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Table 6: Relative MSFE for IP and CPI series for horizons h = 6, 1, 24. The best

result for each horizon over all methods is in bold.

IP

RFHLZ FHLZ FHLR SW(5)

h=6 a 0.8705 0.8641 0.9943 0.9998

b 0.9465 1.0641 0.7079 0.6945

c 0.9118 0.9716 0.8393 0.8347

h=12 a 0.8919 0.8782 0.9541 0.9813

b 0.8595 1.0197 0.7588 0.7475

c 0.8794 0.9645 0.8398 0.8427

h=24 a 0.9703 0.9587 0.9383 0.9912

b 0.6393 0.9604 0.7690 0.7879

c 0.8756 0.9732 0.9070 0.9304

CPI

RFHLZ FHLZ FHLR SW(5)

h=6 a 0.9456 0.9352 1.0365 1.0413

b 0.9298 0.9099 1.0779 1.0353

c 0.9491 0.9369 1.0818 1.0586

h=12 a 0.7941 0.8110 0.9284 0.9750

b 1.0279 1.0745 1.2046 1.1787

c 0.9254 0.9658 1.0920 1.1020

h=24 a 0.7676 0.8475 0.8217 0.8925

b 1.5578 1.8129 1.6656 1.5936

c 0.9524 1.0257 0.9748 1.0034

apre-crisis (1985:2-2007:11); bcrisis (2007:12-2014:8);

cfull sample (1985:2-2014:8)
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Figure 6: V-robust transformation (17) applied to the whole stationary data set.

Black and red bands correspond to |b|=1.5 and |c|=4, respectively. The NBER

recession dates are shaded in light gray. Out-of-sample period reported (1985:2-

2014:8).

of structural breaks and outliers, as in Forni et al. (2018) we only present the results

for the pre-crisis period.

Figures 7 and 8 present the equal local performance fluctuation test of Giacomini

and Rossi (2010). We draw 5% critical values for the bilateral test. When testing

Model 1 vs Model 2, values below (above) the critical values means that Model 1

(Model 2) is statistically better (worse) than Model 2 (Model 1).

The analysis of the results for the non-robust predictors are similar to the Forni

et al. (2018) results. For the IP series, all predictors have smaller MSFEs than the

AR model, except for FHLZ at horizons 6 and 12 in the second period. The null

of equal performance with AR, in the pre-crisis period, is rejected for both RFHLZ

and FHLZ at horizons 6 and 12 (see Tables 6 and 7). For the CPI series, compared

to the AR model, SW(5) and FHLR have a poor performance while FHLZ and

RFHLZ have smaller MSFES, except for horizons 12 and 24 in the second period.

The null of equal performance with AR, in the pre-crisis period, is rejected for both

RFHLZ and FHLZ at horizons 12 and 24 and for FHLR at horizon 24 (see Tables 6

and 7). Analyzing the same tables, comparing RFHLZ to FHLZ, we can see that, for

the pre-crisis period, in general their performances are almost equivalent, while in

the crisis period we have a better performance of RFHLZ. The comparison between

the effect of robustification is better illustrated by the fluctuation test presented in
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Table 7: p-values of Diebold-Mariano test comparing Model 1 vs Model 2 with null

hypothesis of equal global prediction performance during the pre-crisis period. Two-

sided test and horizons (h) equal to 6, 12 and 24. In bold are the results significant

at 10% level.

IP

RFHLZ FHLZ RFHLZ FHLR SW(5)

vs AR vs AR vs FHLZ vs AR vs AR

h=6 0.055 0.027 0.757 0.958 0.999

h=12 0.028 0.002 0.488 0.623 0.852

h=24 0.248 0.113 0.674 0.341 0.890

CPI

RFHLZ FHLZ RFHLZ FHLR SW(5)

vs AR vs AR vs FHLZ vs AR vs AR

h=6 0.322 0.265 0.549 0.855 0.826

h=12 0.023 0.038 0.452 0.632 0.834

h=24 0.011 0.009 0.028 0.373 0.657
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Figures 7 and 8. We can see that robustification improves the performance of FHLZ

and that, in fact, the improvements start some months before the outset of the crisis.

Summing up, the empirical application shows a better performance of the robust

version of the FHLZ model, it increases the performance in periods with outliers

and/or structural breaks, and there is no significant decrease of the performance in

other periods.

6 Conclusions

In this paper, we addressed the identification, estimation, and forecasting procedures

in the GDFM with infinite-dimensional factor space, showing that all procedures are

badly affected by the presence of additive outliers, even when only a few outliers are

present. We also illustrate the impact of neglecting this issue and propose a robust

alternative to circumvent this problem.

Using a robust estimator of the covariance/spectral density matrix, we propose

a robust version of the identification criterion of Hallin and Lǐska (2007) with good

sample properties. The robust alternative has a good performance in contaminated

as well as uncontaminated series.

Furthermore, based on robust estimators and robust filters, we also propose

robust estimation and robust forecasting procedures in the context of GDFM. Our

simulations indicate that our procedures are superior to the non-robust ones in the

presence of outliers with little to no cost in the uncontaminated case.

The new procedures are also applied to macroeconomic and financial time series,

where better results are observed in the crisis period (presence of outliers) compared

to those of the non-robust procedures, and with comparable performance in periods

without crisis.

Our findings are useful for practitioners interested in applying GDFM for fore-

casting purposes giving tips of better practices in the estimation and forecasting

processes. Additionally, the results of our paper contribute to the literature of

GDFM providing new insights and material for future theoretical results.
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7 Appendix

The pre-sample period, February 1960 to January 1985, is used by Forni et al. (2018)

to calibrate the FHLZ, FHLR, SW, and AR methods. To compare two specifications

ma and mb, say, of method m at horizon h=6, 12, 24 for variable i, they use the

ratio

RMSFE
ma/mb

i,h =
MSFEma

i,h

MSFEmb
i,h

.

The calibration procedure is limited to IP and CPI (i = 1 and 77, respectively);

see Forni et al. (2018) for details about the specifications of each model used in

the calibration procedure. The resulting specification of FHLZ and FHRL uses the

triangular kernel with B = 30 and B = 40, respectively. For each rolling window,

the degrees of the VARs are determined by AIC with maximum lag 5, and q is

determined by Hallin-Lǐska criterion. For FHLR, the number of static factors r is

fixed and equal to 6 for IP and 5 for CPI, and the prediction equation of FHLR

does not include lagged values of the generalized principal components and of the

predicted variable. For SW, the selected specifications include a static factor model

with 5 or 6 static factors for IP and a model with 5 static factors for CPI, and no

lags of the static factors and of the predicted variable are included in the prediction

equation. In our paper, we estimate SW with 5 static factors for both IP and CPI.

For the AR model, the number of lags is determined at each rolling window, for each

h, by BIC with maximum lag 13. Finally, we use the same specifications of FHLZ

for its robust version.
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Figure 7: Equal local performance of two forecasting methods (IP). Fluctuation test statis-

tic (solid line) and 5% two-side critical values (dotted line). If the solid is below (above) the

lower (upper) critical value, the first method is significantly better (worse) than the second

one.
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Figure 8: Equal local performance of two forecasting methods (CPI). Fluctuation test

statistic (solid line) and 5% two-side critical values (dotted line). If the solid is below

(above) the lower (upper) critical value, the first method is significantly better (worse) than

the second one.
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